Invertebrate Diversity

by Dr. Jennifer Doherty and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, © 2011¹

Vertebrates are animals that have a backbone. For example, you are a vertebrate. **Invertebrates** are animals that do <u>not</u> have a backbone. For example, an earthworm is an invertebrate.

1. Give some other examples of vertebrates and invertebrates.

Vertebrates	Invertebrates

Today, you will observe four types of invertebrates: earthworms, mealworms, crickets and crayfish. At the end, you will compare these invertebrates with some familiar vertebrates. This chart shows the classification of these animals. (Some information has been omitted to keep things simple.)

Phylum	Subphylum	Class	Name
Annelida			Earthworm
Arthropoda		Insecta	Mealworm
			Cricket
			Crayfish
Chordata	Vertebrata	Mammalia	Dog
			Cat
			Human

				Tiaman	İ
2. All vertebrates ar	e in the phylu	ım	·		
Are all invertebrates	in the same	ohylum?			
How do you know?					
3. The term "worm" body. Are all worms	•		al's body sha	pe. A worm	has a long thin

How do you know?

Today, at one station you will compare earthworms and mealworms, and at another station you will compare crickets and crayfish. **Do not touch** the animals, <u>except</u> as directed by the instructions.

¹ Teachers are encouraged to copy this student handout for classroom use. A Word file (which can be used to prepare a modified version if desired), Teacher Preparation Notes, comments, and the complete list of our hands-on activities are available at http://serendip.brynmawr.edu/sci_edu/waldron/. Additional biology activities are available at http://serendip.brynmawr.edu/exchange/bioactivities.

Comparing Two Worms

Observe the external appearance and behavior of the earthworms and mealworms. You are encouraged to handle them, but please **be careful and don't handle them too roughly**. Turn them over and check out what's underneath. Look at them with a magnifying glass, hand lens, or dissecting microscope.

1. Complete the t	table.					
		Other aspects of body form			Other	
Name	Symmetry	Legs?	Eyes/	Hard	Observations	
		Legs:	antennae?	Surface?	Observations	
Earthworm Phylum:						
Mealworm * Phylum:						
*A mealworm is a land turns into a butterfly.	va of a Darkling b	eetle. A mealwo	rm turns into an a	dult beetle the sa	me way a caterpillar	
2. Comparing the appearance and b		th the mealwo	orm, what differ	ences do you r	notice in	
3. Measure the le	ength of the sai	me earthworm	n several times.	·		
Is the length of an earthworm always the same or does it change?						

4. Describe how the earthworm moves. Is there a relationship between your observations for question 3 and how the earthworm moves?

5. Notice the differences in how the mealworm and earthworm move. How does the mealworm move?

Crickets and Crayfish

Observe the external appearance and behavior of the crickets and crayfish. You can pick up the container to examine the <u>crickets</u>, but **do not open the container**. You can <u>gently</u> prod the <u>crayfish</u> or turn them over (in the water).

1. Complete the table.

1. Complete the		Other	aspects of boo	dy form		
Name	Symmetry	Legs?	Evoc/ Hard		Other Observations	
Cricket Phylum:						
Crayfish Phylum:						

2.	Describe the	differences	between the	cricket's ba	ck pair c	of legs a	and the	front two	pairs of
leg	s. How does	each pair o	f legs help a	cricket move	?				

What is one other way that crickets can move?

3. Do there appear to be more sensory organs at the front end or back end of the crayfish?

Why is this location for the sensory organs useful?

4. How does the crayfish move forward?

How does the crayfish move backward?

Does the crayfish move faster when going forward or backward?

When would the fast motion be useful?

5. What are two functions of the hard outer surfaces of crickets and crayfish?

Fol	low-u	p Qu	estic	ons
-----	-------	------	-------	-----

have	` •	dogs and cats) and all of the invertebrate an symmetry, with a concentration of sensor	•	d
Expla	ain why this type of boo	dy form is useful for these animals.		
Give	an example of an anin	nal with a different type of symmetry.		
What	type of symmetry doe	es this animal have?		
	hat parts of a human's opods?	s body have the same function as the hard o	uter surface of	
Wher	e are these parts loca	ted in humans?		
		ollowing list to complete the second column of crickets, dogs, earthworms, humans, mealy column of the table.		
	Type of Skeleton	Animals that have this type of skeleton	Phylum these animals are in	
	Skeleton on <u>outside</u> of animal*			
	Skeleton inside			
	the animal No skeleton			
	NO SKEIEIOH			
	*The hard outer surface	you observed on some of the animals is a skeleton o	n the outside.	
V				:_
	pe of skeleton they ha	d show that one characteristic that distinguisne.	snes dillerent phyla	IS
long (mea are c	narrow body which is undersolong the single losely related evolution	•	s) or grain orms mean that they	
HOW	ao you know whether	earthworms and mealworms are closely rela	itea evolutionarily?	

5. Which of the animals you studied today has no eyes?
Which has very small eyes?
How do you think the absence or very small size of eyes relates to where these animals live and how they find food?
6. Fill in the blanks with the best matches for the pair of animals shown (one match per blank).
mealworms and earthworms
mealworms and crickets
 a. both burrowing animals b. both in the same phylum c. both have a hard outer surface d. both have a long narrow worm-shaped body e. both have legs f. neither has big eyes
Notice that same similarities are due to chared evalutionary history (enimals in the same

Notice that some similarities are due to shared evolutionary history (animals in the same phylum) and some similarities are related to having a similar lifestyle (burrowing animals).